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Abstract

Vibration acceleration signal is widely used in the health monitoring of rolling element
bearings. A critical work of the bearing fault diagnosis is locating the optimum frequency band
that contains faulty bearing signal, which is usually masked by noise. This project implemented a
spectral kurtosis optimization procedure to find the optimum frequency band. By performing
envelope analysis to the optimum frequency band the bearing fault feature is extracted. Modules
of the algorithm were validated by a combination of analytic work and simulation work. Program
for the whole algorithm is evaluated by an open database of experimental data.

1. Introduction

Rolling element bearing is a mechanical element that constrains the motion and reduces the
friction between two machine parts. A rolling element bearing consists of rollers, inner and outer
rings, and a cage. Lubricant is applied to the contacting surfaces of the parts. Some bearings have
seals to protect from dirt or contaminants.
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Fig. 1 Rolling element bearing
Source: http://en.wikipedia.org/wiki/Rolling-element bearing

Rolling element bearings are widely used in different industry sectors. They are major source
of system failures. In electromechanical systems, bearing faults account for more than 40% of
the induction motor’s failure [1], and gearbox bearing failure is the top contributor of the wind
turbines downtime [2, 3]. Bearings are inexpensive devices, but the failure of bearing is costly. A
$5,000 wind turbine bearing replacement can easily turn into a $250,000 project, not to mention
the cost of downtime [4]. In 1987, LOT Polish Airlines Flight 5055 11-62M crashed because of
failed bearings in one engine, killing all the183 people on the plane [5]. In-situ health monitoring
is used to improve the condition-based maintenance, which reduces the frequency and the loss of
the bearing failure.

In the bearing health monitoring, early detection of the bearing fault is a major concern for
the industry. Vibration acceleration signal is widely used in this purpose because it is sensitive to
the bearing fault and it can be monitored in-situ. However, vibration signals collected by the
sensor contain noise, and direct observation of the faulty bearing signal is not feasible. Therefore,
the objective of the vibration signal bearing fault detection is to test if the vibration signal x(2)
contains the faulty bearing signal s(2)

Faulty bearing: x(t) =s(t) +v(t) (1)
Normal bearing: x(t) =v(t) (2)

where x(2) is the monitored vibration signal; s(?) is the faulty bearing signal; v(?) is the noise,
which is unknown.

An industrial practice to test the existence of s(?) is to test if a unique frequency component
of s(?)- the fault feature frequency component can be extracted from x(?) or not. If the fault
feature frequency component is extracted, the hypothesis that the bearing is faulty is true,
otherwise the hypothesis is false.

According to the research in [6], faulty bearing signal s(z) is a modulated signal. As a
simplified representation, s(z) can be expressed in the following equation:

s(t) = d(t)c(y) €)

where d(t) is the modulating signal. It is a result of the periodic impact between the bearing’s
rolling elements and the fault on the bearing’s contact surface. Its frequency component is the
fault feature frequency, which is illustrated in a simulated faulty bearing signal in Fig.2. The
frequency is provided by the bearing manufacturer or can be calculated from the bearing



geometry; c() is the carrier signal, which is a result of the loading and vibration transfer
function. This signal is usually unknown.
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Fig. 2, Faulty bearing signal s(?)
JfFaun1s the fault feature frequency

Methods like envelope analysis have been developed to extract the fault feature frequency.
The problem is that in the presence of noise the extraction may fail. The solution is to band-pass
filter the vibration signal in the frequency domain, as shown in a simulated vibration signal in

Fig. 3.
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Fig. 3, Vibration signal in the frequency domain

The challenge to design the filter is that the optimum frequency band to band-pass filter the
faulty bearing signal is usually unknown. This project provides a solution to find the optimum

frequency band.

2. Approach for Stationary Signal
This project locates the optimum frequency band by optimizing the band-pass filter with

simulated annealing (SA).
The idea is, the frequency band dominated by the faulty bearing signal is non-Gaussian, and

therefore it has a high spectral kurtosis value [7]. In the presence of white Gaussian noise, by
maximizing the SK, the optimum frequency band for the faulty bearing signal can be found. The
optimization problem is to maximize SK in terms of the central frequency, bandwidth, and the
order of the finite impulse response (FIR) band-pass filter.

Maximize SK(f.,Af,M)
fi—of
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Subject to  fru SAf < <f. <

b
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where f, is the frequency band’s central frequency; Af'is the width of the band; M is the order of
FIR filter; fr,.1s the fault feature frequencys; f; is the sampling rate.



When the optimum frequency band is obtained, envelope analysis is applied to the filtered

signal to extract the bearing faulty feature frequency.
Fig. 4 shows the flow chart of the algorithm.
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Fig. 4, Flow chart of the algorithm

x(n) is the sampled version of the vibration signal x(z). It has N points. At first, the vibration

signal x(n) is band-pass filtered by a FIR filter #(n) of order M to produce the filtered signal

y=((n))n:

hga(n) s the impulse response of the filter

hy(n)=

y(n) =2 x(n—k)h(k)

h(n) = h,(n)yw(n)

sin[(n—M /2) 7 T 29 Gintn— 12y L= 124

f/2

f./2

r(n—-M/2)

w(n) is the window function. In this project, Hamming window will be used:

w(n) = 0.54—0.46 cos(27 %),0 <n<M

()
(6)

(7)

(8)



This algorithm is implemented by Matlab’s build-in function “firl”.

Before optimizing the filter, initial input is obtained by calculating SK for the signal filtered
by an FIR filter-bank. The filter-bank has a structure of binary tree as shown in Fig. 5. S ;
denotes the jth filter at the kth level. When the signal is processed by the filter-bank, sub-signals
corresponding to the filters are obtained.

Level 0 So.1

Level 1 Si.1 Si2

Level 2 S2.1 S22 S2.3 So4
Level3 | S3,1 | S32 | S33 | S34 | S35 | S36| S3,7| S38

Levelk |Sk,j|

0 Frequency fs2
Fig. 5 Structure of the FIR filter-bank

2.2 Spectral Kurtosis
Then the spectral kurtosis of the filtered signal y(n) is calculated. Spectral kurtosis is defined
based on the 4th order cumulants [8]:

o _ KV (m), Y (m), Y(m),Y" (m)}
[, {Y (m), Y (m)} T )

where x, is the rth order cumulant. Y(m) is the DFT of the signal y(n):

n

Nl —i27mm—
Y(m):Zy(n)e N m=0,1,.,N-1
n=0

(10)
Both y(n) and Y(m) are N points sequences. SK is a real number.
To estimate SK, the formula for joint cumulant is used:
K Y (m),Y " (m), Y (m),Y" (m) = E[Y (m)Y" (m)Y (m)Y " (m)] = E[Y (m)Y (m)] (11)

— E[Y"(m)Y"(m)] = 2E[Y (m)Y " (m)]

According to [9], DFT of a stationary signal is a circular complex random variable, and
E[Y(m)*]=0, E[Y (m)*]=0. Therefore, we have

« _ EUYG[=2AEQY ) PYT _ EQYm)['}
LE Y (m)[}T EAY(m) P} )




2.3 Simulated annealing

The process of estimating SK as a function of the FIR filter is optimized by simulated
annealing (SA) [10], which is a metaheuristic global optimization tool. The flowchart of
implementing is illustrated in Fig. 6. In reach iteration, there is a chance that a worse case would

be accepted and thus simulated annealing can avoid the searching being trapped in a local
minimum.
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Fig. 6, Flow chart of simulated annealing

2.4 Envelope analysis

When the optimized frequency band is found, envelope analysis is applied to the filtered

signal. The enveloped signal is obtained from the magnitude of the analytic signal which is
constructed via Hilbert transform:

j/o(t):fwyo(r)h(t—f)dr (13)

1
h(t)=—
& (14)
Analytic signal

V&) =y, O+ jy, (1) (15)



The envelope is the magnitude of the analytic signal

a(t) = 7, (1) »

Fig. 7 shows the effect of envelope analysis on a modulated signal
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Fig. 7, Effect of envelope analysis
3. Approach for non-stationary signal

SK estimated from equation (12) requires that the signal must be stationary. In some
literatures the faulty bearing signals were treated as stationary, but according to [11] the faulty
bearing signal has small random variation in its frequency, thus the signal may not be truly
stationary. In this approach a new definition of SK for non-stationary signal is used.

3.1 SK for non-stationary signal
In the new definition SK is estimated based on short-time Fourier transform (STFT), which is

expressed in equation (17) [7]:
(| X(n.m)[*)

: (17)
(| X(nm) )

K(m) =

where K(m) is the spectral kurtosis around the frequency m; X(n,m) is the STFT of the raw
signal x=(x(k))r. Y(n,m)=| X(n,m)| is the magnitude of X(n,m). n is the time index and m is the
frequency index. () is the time averaging operator that

(f0) = 2 £ () (18)
STFT of the signal x(n) is:
X(n,m) = NZx(k)w(k —n)e s (19)

f; 1s the sampling rate; w is the window function. In this project, Hanning window is used,
which is:

w(n) = 0.5(1 — cos( if’fql)) (20)

3.2 Algorithm for the new approach
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Fig. 8, Flow chart of the algorithm of the new approach

4. Validation

4.1 Validation by simulated data

An accepted bearing vibration signal generation model was developed in [6], as expressed in
equation (21):

5(0) = dyaogy 3 |5t~ T, Jsin(2af, (¢~ T, e <07

k=0 Y J\ Y }\_Y_/

Impulse series Resonance Decay

1)

This model contains three parts that correspond to the physical mechanism. The first part is
the impulse series generated by the impact of the rolling elements and the fault; the second part
is the resonance excited by the impact; the third part is the decay of each impulse.

To generate the signal, parameters were set as dj=1; a;=100; g,=1; £,=3000 (the carrier
frequency); Ty=1/100 (reciprocal of the modulating frequency).

Gaussian white noise v(n) is added to the signal, and the SNR is 8. The noise corrupted signal
is illustrated in Fig. 9.
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Fig. 9, Simulated signal (left: time series; right: frequency domain)
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The designed optimum frequency band is: central frequency £,=3000Hz; bandwidth f;=100Hz.
The modulating frequency to be extracted is 100Hz.

In the implementation of approach 1 for the simulated data, start point of the simulated
annealing found by the algorithm was f,=3188Hz, f;=375Hz, filter order M=1024, and spectral
kurtosis SK=8314. After optimization, the optimized filter is £,=3165Hz; f,=374Hz, M=975and
the maximized SK=10573.

After performing envelope analysis to the optimized frequency band, the modulating
frequency component was extracted, as shown in Fig. 10.
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Fig. 10, Magnitude of the FFT of the demodulated signal.

4.2 Validation by experimental data

The experimental data used in this experiment is from a database [12] which is open to public
by Case Western Reserve University.

The data was generated by a test rig where an accelerometer collected data from a faulty
bearing driven by a motor, as shown in Fig. 11.

ig. 11, Testrig ;eproduced from [712]



12 sets of “Fan-End Bearing Fault Data, Inner Race” from [12] were used to validate the
algorithm. In all the 12 sets of data, bearings have fault on inner race fault. The sampling rate is
12,000Hz. 24,000 data points of each set were used in this project.

Time series and magnitude of the FFT for the experiment data set (No. 281) is shown below

in Fig. 12.
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Fig. 12, One set of experimental data

By applying the algorithm of the first approach, following results were obtained. The red dash
line indicate the expected fault feature frequency. Obviously, this approach does not work well

for the experimental data.
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Fig. 13, Results for the experimental data of the first approach
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Since the SK defined in the first approach is valid only for stationary signal, and the bearing

signal may be non-stationary, so the algorithm of the second approach, which is based on SK

defined for non-stationary data, should improve the result. Fig. 14 shows the analysis result of
the second approach.
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Fig. 14, Results for the experimental data of the second approach

As expected, the second approach improves the result for experimental data. But fault features
were not extracted for more than half of the data sets.

5.

Parallel Computing

In the optimization step, because multiple rounds of annealing can be carried out
independently, parallel computing can be implemented to improve the computing efficiency. In
this project, parallelization has been implemented in the second approach as shown in Fig. 15.
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Fig. 15, Flowchart for parallelization

Multi-core computing is used to implement parallelization. Matlab “parfor” command was
used in this project. 4 rounds of simulated annealing were run in parallel. At the end of
optimization, the best result of the 4 rounds was used as the output.

The algorithm was run on a computer with Intel Core Duo CPU E7500 2.93GHz and 2.00GB
memory, which is similar to bearing online monitoring computers.

Analysis result for the experimental data is shown in Fig. 16.

1.5 6 0.2 6
0.15
2 4 ‘ Detected 2, ‘Detected g Detected 2,
2 2 2 2
€ IS € 01 IS
g 0.5 g ) : g,
s - = l > 0.05 L =
7 T N ol L b 0 H‘ sl b1 ok L1y
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Frequency(Hz) Frequency(Hz) Frequency(Hz) Frequency(Hz)
6 Dataset 278 Dataset 279 0.8 Dataset 280 0.8 Dataset 281
® ‘ o 0.6 o 0.6 o 0.6
< 4 ° ° °
=1 3 3 3
= E 04 ! E 04 ! E 04
[=2} (=2} (=2} (=2}
T 2 54 54 54
= = 02 J ‘ = 02 J ‘ = 0.2 J
0 ‘ | 0 b 0 Lo 0 n 4 s
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Frequency(Hz) Frequency(Hz) Frequency(Hz) Frequency(Hz)
x 10° Dataset 274 Dataset 275 Dataset 276 Dataset 277
6 6 0.03 4
g4 ‘ Detected g4 ‘Detected g 002 ‘ Detected g 3 ‘ Detected
£ £ £ g2
g 2 g 2 g 0.01 g
= = s - =1
0 0 J || 0 U Aol 0 J L)
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Frequency(Hz) Frequency(Hz) Frequency(Hz) Frequency(Hz)
Dataset 270 Dataset 271 Dataset 272 Dataset 273

Fig. 16, Results of parallel computing

Except for the data set 279 and 271, results for serial computing and parallel computing are
the same. Table I. compares the results. Yes = detected; No = not detected

Table I. Comparison of serial and parallel computing results

Data set | 278 | 279 | 280 | 281 | 274 | 275 | 276 | 277 | 270 | 271 | 272 | 273
Serial Yes | No | Yes | No No No No No | Yes | No | Yes | VYes
Parallel | Yes | Yes | Yes | No No No No No | Yes | Yes | Yes | Yes
Executing time of serial computing and parallel computing is compared in Table II.

Overhead is not included in the calculation of time. For the given hardware, parallel computing
does not improve the efficiency of computation.

Table I. Comparison of computing time



6. Conclusions

In this project a bearing fault feature extraction algorithm is developed. While spectral
kurtosis is capable to evaluate the bearing fault information carried in a frequency band,
simulated annealing enables spectral kurtosis to search a large range of frequency bands thus the
frequency band contains most of the fault information can be located.

In this project the experimental data is difficult to be fit with a model for further evaluation,
and simulated annealing provides a solution to perform optimization tasks for this data. It is also
observed that the spectral kurtosis estimated as the kurtosis of the raw signal's Fourier transform
can extract correct information from simulated stationary signal, but it does not work for
experimental data, which is likely to be non-stationary. On the other hand, the spectral kurtosis
estimated based on short-time Fourier transform is more suitable to process the experimental
data. Finally, parallel computation can be applied to the re-annealing stage in simulated
annealing. However, depending on the hardware, the efficiency of computation may not
necessarily be improved.
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