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Abstract 

Vibration acceleration signal is widely used in the health monitoring of rolling element 
bearings.  A critical work of the bearing fault diagnosis is locating the optimum frequency band 
that contains faulty bearing signal, which is usually masked by noise. This project implemented a 
spectral kurtosis optimization procedure to find the optimum frequency band. By performing 
envelope analysis to the optimum frequency band the bearing fault feature is extracted. Modules 
of the algorithm were validated by a combination of analytic work and simulation work. Program 
for the whole algorithm is evaluated by an open database of experimental data. 

 
1. Introduction 

Rolling element bearing is a mechanical element that constrains the motion and reduces the 
friction between two machine parts. A rolling element bearing consists of rollers, inner and outer 
rings, and a cage. Lubricant is applied to the contacting surfaces of the parts. Some bearings have 
seals to protect from dirt or contaminants. 
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geometry; c(t) is the carrier signal, which is a result of  the loading and vibration transfer 
function. This signal is usually unknown. 
 

 
Fig. 2, Faulty bearing signal s(t) 

fFault is the fault feature frequency 
 
Methods like envelope analysis have been developed to extract the fault feature frequency. 

The problem is that in the presence of noise the extraction may fail. The solution is to band-pass 
filter the vibration signal in the frequency domain, as shown in a simulated vibration signal in 
Fig. 3. 

 

 
Fig. 3, Vibration signal in the frequency domain 

 
The challenge to design the filter is that the optimum frequency band to band-pass filter the 

faulty bearing signal is usually unknown. This project provides a solution to find the optimum 
frequency band. 
 
2. Approach for Stationary Signal 

This project locates the optimum frequency band by optimizing the band-pass filter with 
simulated annealing (SA). 

The idea is, the frequency band dominated by the faulty bearing signal is non-Gaussian, and 
therefore it has a high spectral kurtosis value [7]. In the presence of white Gaussian noise, by 
maximizing the SK, the optimum frequency band for the faulty bearing signal can be found. The 
optimization problem is to maximize SK in terms of the central frequency, bandwidth, and the 
order of the finite impulse response (FIR) band-pass filter. 

 

   (4) 
 

where  fc is the frequency band’s central frequency; Δf is the width of the band; M is the order of 
FIR filter; fFaul is the fault feature frequency; fs is the sampling rate. 
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When the optimum frequency band is obtained, envelope analysis is applied to the filtered 
signal to extract the bearing faulty feature frequency. 

Fig. 4 shows the flow chart of the algorithm. 
 

 
Fig. 4, Flow chart of the algorithm 

 
2.1 Filter-bank 
x(n) is the sampled version of the vibration signal x(t). It has N points. At first, the vibration 

signal x(n) is band-pass filtered by a FIR filter h(n) of order M to produce the filtered signal 
y=(y(n))n: 
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hd(n) is the impulse response of the filter 

   (7) 
 

w(n) is the window function. In this project, Hamming window will be used: 
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a(n) is the envelope of yo(n) ;
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)2/(

]
2/

2/
)2/sin[(]

2/

2/
)2/sin[(

)(
Mn

f

ff
Mn

f

ff
Mn

nh s

c

s

c

d 










Mn
M

n
nw  0),2cos(46.054.0)( 



 
This algorithm is implemented by Matlab’s build-in function “fir1”. 
Before optimizing the filter, initial input is obtained by calculating SK for the signal filtered 

by an FIR filter-bank. The filter-bank has a structure of binary tree as shown in Fig. 5. Sk,j 
denotes the jth filter at the kth level. When the signal is processed by the filter-bank, sub-signals 
corresponding to the filters are obtained.  

 

 
Fig. 5 Structure of the FIR filter-bank 

 
2.2 Spectral Kurtosis 
Then the spectral kurtosis of the filtered signal y(n) is calculated. Spectral kurtosis is defined 

based on the 4th order cumulants [8]: 
 

   (9) 
 

where κr is the rth order cumulant. Y(m) is the DFT of the signal y(n): 
 

   (10) 
 

Both y(n) and Y(m) are N points sequences. SK is a real number. 
To estimate SK, the formula for joint cumulant is used: 
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According to [9], DFT of a stationary signal is a circular complex random variable, and 

E[Y(m)2]=0, E[Y* (m)2]=0. Therefore, we have 
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2.3 Simulated annealing 
The process of estimating SK as a function of the FIR filter is optimized by simulated 

annealing (SA) [10], which is a metaheuristic  global optimization tool. The flowchart of 
implementing is illustrated in Fig. 6. In reach iteration, there is a chance that a worse case would 
be accepted and thus simulated annealing can avoid the searching being trapped in a local 
minimum.  

 
 

 
Fig. 6, Flow chart of simulated annealing 

 
2.4 Envelope analysis 
When the optimized frequency band is found, envelope analysis is applied to the filtered 

signal. The enveloped signal is obtained from the magnitude of the analytic signal which is 
constructed via Hilbert transform:  
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The envelope is the magnitude of the analytic signal 
 

      (16) 
Fig. 7 shows the effect of envelope analysis on a modulated signal 

 
Fig. 7, Effect of envelope analysis 

 
3. Approach for non-stationary signal 

SK estimated from equation (12) requires that the signal must be stationary. In some 
literatures the faulty bearing signals were treated as stationary, but according to [11] the faulty 
bearing signal has small random variation in its frequency, thus the signal may  not be truly 
stationary. In this approach a new definition of SK for non-stationary signal is used. 

 
3.1 SK for non-stationary signal 
In the new definition SK is estimated based on short-time Fourier transform (STFT), which is 

expressed in equation (17) [7]: 
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where K(m) is the spectral kurtosis around the frequency m; X(n,m) is the STFT of the raw 

signal x=(x(k))k. Y(n,m)=| X(n,m)| is the magnitude of X(n,m). n is the time index and m is the 
frequency index. 〈•〉is the time averaging operator that   
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fs is the sampling rate; w is the window function. In this project, Hanning window is used, 

which is: 
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3.2 Algorithm for the new approach 
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Fig. 8, Flow chart of the algorithm of the new approach 

 
4. Validation 

4.1 Validation by simulated data 
An accepted bearing vibration signal generation model was developed in [6], as expressed in 

equation (21): 
 

   (21) 
 

This model contains three parts that correspond to the physical mechanism. The first part is 
the impulse series generated by the impact of the rolling elements and the fault; the second part 
is the resonance excited by the impact; the third part is the decay of each impulse. 

To generate the signal, parameters were set as d0=1; a0=100; q0=1; fn=3000 (the carrier 
frequency); T0=1/100 (reciprocal of the modulating frequency). 

Gaussian white noise v(n) is added to the signal, and the SNR is 8. The noise corrupted signal 
is illustrated in Fig. 9. 
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12 sets of “Fan-End Bearing Fault Data, Inner Race” from [12] were used to validate the 
algorithm. In all the 12 sets of data, bearings have fault on inner race fault. The sampling rate is 
12,000Hz. 24,000 data points of each set were used in this project. 

Time series and magnitude of the FFT for the experiment data set (No. 281) is shown below 
in Fig. 12. 

 

 
Fig. 12, One set of experimental data 

 
By applying the algorithm of the first approach, following results were obtained. The red dash 

line indicate the expected fault feature frequency. Obviously, this approach does not work well 
for the experimental data. 

 
Fig. 13, Results for the experimental data of the first approach 

 
Since the SK defined in the first approach is valid only for stationary signal, and the bearing 

signal may be non-stationary, so the algorithm of the second approach, which is based on SK 
defined for non-stationary data, should improve the result. Fig. 14 shows the analysis result of 
the second approach. 
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Fig. 14, Results for the experimental data of the second approach 

 
As expected, the second approach improves the result for experimental data. But fault features 

were not extracted for more than half of the data sets. 
 

5. Parallel Computing 
In the optimization step, because multiple rounds of annealing can be carried out 

independently, parallel computing can be implemented to improve the computing efficiency. In 
this project, parallelization has been implemented in the second approach as shown in Fig. 15. 
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Fig. 15, Flowchart for parallelization 
 

Multi-core computing is used to implement parallelization. Matlab “parfor” command was 
used in this project. 4 rounds of simulated annealing were run in parallel. At the end of 
optimization, the best result of the 4 rounds was used as the output. 

The algorithm was run on a computer with Intel Core Duo CPU E7500 2.93GHz and 2.00GB 
memory, which is similar to bearing online monitoring computers. 

Analysis result for the experimental data is shown in Fig. 16. 
 

 
Fig. 16, Results of parallel computing 

 
Except for the data set 279 and 271, results for serial computing and parallel computing are 

the same.  Table I. compares the results. Yes = detected; No =  not detected 
 
Table I. Comparison of serial and parallel computing results 

 
 

Executing time of serial computing and parallel computing is compared in Table II. 
Overhead is not included in the calculation of time. For the given hardware, parallel computing 
does not improve the efficiency of computation. 

 
Table I. Comparison of computing time 
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6. Conclusions 
In this project a bearing fault feature extraction algorithm is developed. While spectral 

kurtosis is capable to evaluate the bearing fault information carried in a frequency band, 
simulated annealing enables spectral kurtosis to search a large range of frequency bands thus the 
frequency band contains most of the fault information can be located. 

In this project the experimental data is difficult to be fit with a model for further evaluation, 
and simulated annealing provides a solution to perform optimization tasks for this data. It is also 
observed that the spectral kurtosis estimated as the kurtosis of the raw signal's Fourier transform 
can extract correct information from simulated stationary signal, but it does not work for 
experimental data, which is likely to be non-stationary. On the other hand, the spectral kurtosis 
estimated based on short-time Fourier transform is more suitable to process the experimental 
data. Finally, parallel computation can be applied to the re-annealing stage in simulated 
annealing. However, depending on the hardware, the efficiency of computation may not 
necessarily be improved. 
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